丂
|
擔帪丗
暯惉20擭3寧21擔(嬥) 屵慜11帪乣屵屻5帪 |
応強丗
撧椙彈巕戝妛棟妛晹怴B搹係奒丂悢妛戞俁僙儈僫乕幒乮撧椙巗杒嫑壆惣挰乯丄
丂丂丂丂(傾僋僙僗儅僢僾) 丂 |
|
丒11丗00乣11丗50 嬤摗桰壚巕
乮撧椙彈巕戝妛戝妛堾悢妛愱峌廋巑俀擭乯
丂丂丂丂乽3師尦媴柺撪偺 pre-fiber surface偺deplumbing偵偮偄偰乿
Abstract丗
丂丂Sharlemann-Thompson偼寢傃栚夝徚悢偑1偺寢傃栚K偵懳偟偰偼偦偺嵟彫庬悢僓僀僼僃儖僩枌S偱, 偁傞嬋柺偲Hopf band偺plumbing偵側偭偰偍傝, 偝傜偵寢傃栚夝徚憖嶌偼偙偺Hopf band偺傂偹傝傪傎偳偔 偙偲偵懳墳偡傞傛偆側傕偺偑懚嵼偡傞偙偲傪帵偟偨. 丂丂摿偵K偑僼傽僀僶乕寢傃栚側傜偽, 偦偺嵟彫庬悢僓僀僼僃儖僩枌偼昁偢僼傽僀僶乕嬋柺偵側傞偺偱, 忋偺S偼僼傽僀僶乕嬋柺偵側傞. 偙偺S偐傜忋偺傛偆偵傂偹傝傪傎偳偄偰摼傜傟傞嬋柺S'偼帺柧側寢傃栚 偺僓僀僼僃儖僩枌偵側偭偰偄傞偑, 偙偺傛偆側僓僀僼僃儖僩枌偺摿挜晅偗偑彫椦婤巵偵傛偭偰梌偊傜傟 偰偍傝, 偦偺傛偆側嬋柺偼pre-fiber surface偲屇偽傟偰偄傞. 杮島墘偱偼pre-fiber surface傪4曈宍偺 懞悪榓偱暘夝偡傞(deplumbing)偲, 曅曽偑昁偢pre-fiber surface偵側傞偲偄偆寢壥傪曬崘偡傞. 丂 |
丒12丗40乣13丗30 怴彲楁巕
乮戝嶃巗棫戝妛悢妛尋媶強乯
丂丂乽Spatial graph diagrams realizing prescribed subdiagrams partitions乿
Abstract丗
丂丂Suppose $D_1, D_2, \ldots, D_n$ are diagrams of spatial graphs. If a spatial graph $G$ is partitioned into edge disjoint spatial graphs $H_1, H_2, \ldots, H_n$ admitting the diagrams $D_1, D_2, \ldots, D_n$, respectively, then there is a diagram of $G$ whose restrictions to $H_1, H_2, \ldots, H_n$ are equivalent to $D_1, D_2, \ldots, D_n$, respectively. This is a natural extension of the result concerning link diagrams given by J. H. Lee and G. T. Jin. 丂 |
丒3丗40乣14丗30 挘 汵昉
乮戝嶃戝妛戝妛堾棟妛尋媶壢悢妛愱峌乯
乽Genus-two Heegaard splittings of non-simple 3-manifolds and
3-bridge presentations of 3-bridge links乿
Abstract丗
丂丂It is well known that a closed orientable 3-manifold can be splitted into two handlebodies. Such a splitting is called a Heegaard splitting.We say that two Heegaard splittings of a given 3-manifold are homeomorphic (resp. isotopic) if there exists an auto-homeomorphism (resp. an isotopy) of the manifold taking one Heegaard splitting to the other. 丂丂In this talk, we introduce a method to distinguish Heegaard splittings of 3-manifolds up to isotopy or up to homeomorphism. This gives an answer to a question by Morimoto and a new counter-example to a conjecture by Waldhausen. 丂丂We also introduce the relation between genus-two Heegaard splittings of 3-manifolds and 3-bridge presentations of 3-bridge links. Together with the argument about the classification of Heegaard splittings, we obtain 3-bridge links each of which admits infinitely many 3-bridge presentations. 丂 |
丒14丗40乣17丗00 怷尦 姩帯
乮峛撿戝妛棟岺妛晹乯
乽Essential surfaces in the exteriors of torus knots with twists乿
Abstract丗
丂丂 (p,q)-僩乕儔僗寢傃栚偐傜丄r 杮乮侾亙倰亙倫乯偺暯峴側晹暘傪壗搙偐傂偹偭偰偱偒傞寢傃栚偺 曗嬻娫偵丄杮幙揑側暵嬋柺偑擖傞偐偳偆偐偲偄偆偙偲傪峫嶡偄偨偟傑偡丅偙偺傛偆側寢傃栚偼丄 僨乕儞庤弍傗僩儞僱儖悢偺壛朄惈栤戣偵偍偄偰丄廳梫側栶妱傪偡傞寢傃栚偱偁傝丄嬶懱揑偵挷傋傞 偙偲偵傛傝丄條乆側偙偲偑尒偊偰偔傞偲巚偄傑偡丅嵟嬤偱偼丄偦偺傛偆側寢傃栚偺曗嬻娫偺 僸乕僈乕僪暘夝傪挷傋傞尋媶側偳傕恑傫偱偄傑偡丅寢壥偲偟偰偼丄r 偑 2 偺応崌偼丄杮幙揑側 暵嬋柺偼擖傜側偄偲偄偆偙偲偲丄r 偑慺悢偱側偄応崌偼丄p 偲 q 傪忋庤偵慖傇偙偲偵傛傝丄杮幙揑 側僩乕儔僗偑擖傞偲偄偆偙偲偑徹柧偝傟傑偟偨丅屻敿偺晹暘偼揹婥捠怣戝妛偺嶳揷桾堦偝傫偲偺 嫟摨尋媶偱偡丅敪揥偲偟偰偼丄r 偑 2 傛傝戝偒偄慺悢偺応崌偵偮偄偰偺峫嶡偑廳梫偵側傞偲巚偄傑偡丅 |